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SFCTION 1

INTRODUCTION

For enhancing vertical.y-incident P-waves, the application
of multichannel filter techniques to seismometer systems consisting of
both horizontal- and vertical-component instruments presents an attrac-
tive alternative to the use of systems consisting solely of vertical seis-
mometers. The advantage of using horizontals is that it permits & Lype of
noise-reduction processing which (1) exploits coupling between licrizontal
and vertical components of ambient seismic noise and (2) preserves the

exact form of the P-wave signal.

In this report we shall discuss the theoretical capabilities
of systems consisting of a single vertical seismometer v and one or more
horizontal seismometers hl' hZ’ . . . hM. We shall restrict our atten-
tion 10 the following type of processing: we apply to each horizontal seis-

mometer output hj a linear time-invariant {filter gj, and subtract all of the

filter outputs gj @ hi from v to obtain the output o of our processor. Thus,

-

o=v-gl®h1 - g2®h2-. : .gM@hM(Figurel.l).

Evidently, this prucessing scheme leads to no degradation of the P-wave
signal since the vertically-incident P-wave has no hcorizontal ccmponent.
In order to achieve maximum noise suppression, the filters gj must be

designed in such a way that (in the absence of signal)

T

S I O

-T

is minimized. Such optimal filters are called Wiener prediction filters;

I-1
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where the Cuj are the frequency-domain responses of the filters g., and

the ij, avk are the auto- and crosspower spectra of the sei.mometer

traces.

The simplest processor of this type is the 2-component
seismometer at point location; i.e., a sirgle vertical seismometer v and
a single horizontal seismometer h located at the same point un the earth's

surface. Here, the output of the processor is simply

o=v-g®n

where g(t) is determined by

G(f) = &vh/ LI

Part I of this report is devoted to a detailed consideration of the capabili-
ties and limitations of this 2-channel processor in ambient trapped-mode
noise. The feasibility of using a 2-compcnent seismometer as a P-wave
enhancer is suggested by the observation that complete suppression of
noise would be achieved with this system in the ideal situation tha. the
noise is simply a unidirectional single-mode Rayleigh wave. In that

case, v would be purely a convolution of h; that iz, v= k® h for some

I-3
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function k(t), and taking g = k, we get o(t) = 0. One should expect that
deviation from this ideal pcrformance would be due principally to the

following factors:

(1) If the Rayleigh wave field is not unidirectional, but comes from
a distribution of azimuths, there will be less than perfect pcrform-
ance even if all the ncise propagates in a single mode. In fact, in iso-
tropic noise, uncorrelated by azimuth, no noise reduction whatsoever can

be achieved with the system,

(2) Realistically, v and h must be assumed to contain components
nf random noise uncorrelated with the Rayleigh waves (e.g., amplifier

noise).

(2) The presence on the horizontal of Love (SH) waves, statistically
independent from the Rayleigh waves, reduces performance. (One may
conceive of Love waves on h as a special case of (2), but it will be seen

that it may sometimes be misleading to do so.)

(4) The amplitude gains of seismometers vary slowly with time; this
places a limitaticn on the effectiveness of a system in which the prerdiction
filter, once it has been designed, is left online for an extended period of

time,

(5) Several modes of Rayleigh-type noise may be present, each having

a different transfer-function relating the vertical and horizontal component.

The quantitative effects of (1) through (5) on the prediction
capability of the 2-ccmponent seismometer at point location are discussed
in Sections I, 1V, V, VI, and VI, respectively. Section Il is devoted to
a summary of communication theo1y formulae and notation used in the rest

ot the paper.




Part 1l begins in Section IX with a derivation of general
formulae for the response, in single-mode noise, of a planar array of
seismometers v, hl' hZ' . hM, where the horizontals hj may Lave
arbitrary orientations and may be separated from each other or from
the vertical v. Certain arrays of this type will be shown to give good
nerformance even in isotropic noise. In Section X, the formulae from
Section IX are used to calculate the response in isotropic single-mode

noise (with the possible addition of Love waves) of arrays consisting of

radially-oriented horizontal seismometers regularly spaced around a

ring having the vertical seismometer at its center. I. will be shown that

such array geometries are optimal in a certain sense.

The sections of this report are, for the most part, inde-

pendent of each other with the following exceptions: Sectionll is intended

for reference only; Section III should be read first; Section IV should be

read before Section V; and Section IX should be read before Section X.

Lars

s %
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SECTION II

COMMUNICATION THEORY FORMULAS AND NOTATION

Primarily for the purpose of fixing notation, we shall state

several formulas to be used in the rest of this paper,
A. CORRELATION FUNCTIONS

Let x(t) be a stationary random proecss, Then the auto-
correlation function C'cxx(t) of x(t) is defined as
. T
1
v (t) = o0 x(T)x(T-t) dT
T

XX T

By ergodicity, the autocorrelation function ¢ (t) depends only upon the
XX

ensemble to which x(t) belongs.

The autopower spectrum éxx"f) of x(t) is the Fcurier trans-

form of o (t):
XX

(. -i2mft
e (1) = f 3 (e dt

-®

Similarly, if x(t) and y(t) are stationary random processes,

the crosscorrelation function y(t) of x and y is
X

lim T .
" = Ty (T-t) d
oxy(t) T ) x(T)y (T -t) dT

and the crosspower spectrum @xy(f) nf x and y is

7 12Tt
@xy(f) -f (tye dt

-0

pry

(2.1)

(2.2)

(2. 3)

(2. 4)
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The crosspower spectrum is easily seen to satisfy

$ (f) = a, & (f) + a_ &

a1x1+ Ctzxz,y 1 3% 2 X,
and (2.5)

£ e
¢ () = & (f) denotes complex
yx Xy . .
conjugation
B. LINEAR FILTERS
The output z(t) of the most general linear filter applied to 1
x(t) may be expressed as
=]
2(t) = (k®x)(t) = L k(T )x(t - 7) dr G

where k(T) is a function such that

[ hnylar < =

The Four.er transform K(f) of k(T) is called the transfer

function of the filter k.

C. CROSSPOWER SPECTRA OF FILTERED TIME FUNCTIONGS

Suppose x(t) and y(t) are stationary random processes, and ]
g(t) and k(t) are linear filters. Let G(f) and K(f) be the transfer functions
corresponding to g and k respectively. Then it is easily verified from l
(2.1)-(2. 6) that
d ) = K () ¢ () '
Jk® -
AT 3 (2.7)
= f) l
°g®x' y(f) G(f) xy(f)
and l
ey

]
QE@X, k@‘)y(f) = G(f) K (f) ‘I>xy(f)

II-2




In particular,

2
P @ g®x D = 1GOOI E (0 (¢.8)

D. COHERENCE

Let x (t) and y(t) be stationary random processes. The

coherence ny(f) between x and y is defined as follows:

e, 08 0 e 0]
C (f) = = (2.9)
Xy @xx(f) @yy(f) @xx(f) '?yy(f)

It may be shown that C(f) satisfies 0 < C(f) < 1 for all real f.

If g and k are linear filters, it is immediate from (2.7) and

(2.9) that
Co@yx, k®y = Cy (D (2. 10)

That is, the coherence between x and y is invariant with respect to

transformation of x and y by arbitrary linear filters.

E. PREDICTION

Let v(t) and h(t) be stationary random processes (e. g., vertical
and horizontal components of ambient seismic noise at some location). We
wish to find the best frequency filter g(t) to apply to h(t) such that the filtered

signal H(t) = (g ® h) (t) minimizes the expression

lim

T
2
i I TOI O Lt

I1-3




T CCerr— g

If we let e(t) = v(¢) - h'(t), and G(f) = Fourier transform of g(t), our problem

is equivalent to finding G(f) such that

X kY

f_m»ee(f, df (2.11)
1 o
] is minimized.
: Using (2.5), we have
Peeld = & L0 (2.12)
= vi(f) - §vhr(f) - thv(f) + thhl (f)
‘
; = 8 () - 2Re (B4 (D) + 81000

Hence by (2.7),
l 2
: Qee(f) = vi(f) - 2Re (G(f) §hv(f)) + IG(f)! th(f) (2.13)
x The last expression, the integrand in (2.11), is non-negative
i for all f. Hence to n.inimize (2.11), we minimize (2.13) at each f. Letting

G(f) = 0o + iV

in (2. 13) and setting
3(¢.10)  3(t0)
3y Y
we find

G (th(f)) o -Im (th(f))

8
)

Ii-4




Hence the optimum prediction filter is given by

{£)
| ; vh
Glf) = (2. 14)
) 5 q)hh(f)

Substitution of (2. 14) into (2. 13) shows that the autopower

spectrum of the least-mean-square error is

inimal - )
minima @ee(f) vi(f) 1 vi(f) 3 (2.15)

e

-
. [ &0, ()
) (D

vv

= ¢ (f) Fl-C(f)J

-

where C{f) = coherence between h and v.

Because of (2.15), we call 1-C(f) the relative prediction

3) Ve error for the frequency f,

I1-5/6
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SECTION III
SINGLE MODE RAYLEIGH WAVE FIELD

Let O be the origin of an X-Y coordinate system in the plane
of the earth's surface and let Z be a vertical axis through O, positive down-
ward. If Q is any point in the X-Y plane, the azimuth of Q is the angle &

measured counterclockwise from the positive X axis to the line segment OQ.

We suppose P to be the location of a 2-component seismometer
consisting of a vertical component oriented downward along Z, and a hori-

zontal component oriented in the positive X-directiun.
A. FINITE NUMBER OF DISCRETE UNCORRELATED POINT SOURCES

Suppose we have a finite number N of single-m.de Rayleigh

wave point sources, located at azimuth 91, 8 Let )..n(t) be

s o« e, B...
2 N
the inline horizontal motion at P due to the nth source; Kn(t) is positive in
the direction -en, the direction of propagation, Let vn(t) be the vertical

. th
motion at P due to the n  source.
We make the following basic assumptions:
(1) For eachn, )\n(t) is a stationary random process.

(2) The autocorrelation functions D ) (t) are all the
n n
same except for multiplicative constants.

(3) All of the crosscorrelation functions Y

) , m#n,
m n

are zero.
~D
(4) There exists a function k(t) withj |k(t)|dt < @®
-
such that v_ = k® A foralln, i.e.,

. ]

v_(1) =f k(s) X_(t-s)ds

- 0

In this report, the term ''Rayleigh wave'' is used to refer to all types
of elliptically polarized surface waves and is meant to encompass all

surface waves except Love (SH) waves.

III-1
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Let us define

h (t) = - cos8 1 (1) (3.1)

N
h(t) =2 h_(t) (3.2)
n=1

v(t) =§ vn(t)
n=1 I

Clearly hn is the contribution to the output of our horizontal

seismom-:ter due to t'.e nth source, and h{t) and v(t) are the outputs of the

herizontal znd vertical seismometers, respectively.
We proceed to calculate the coherence

2

.. s , |
K

vv hh

between v and h.
Our assumption {3) is equivalent to another assumption:

A

(3a) 8, , () =0, m#én )
m n

Our assumption (2) is equivalent to another assumption: 1

(2a) There exists an autopower spectrum & ., and non-negative

N

N
constants p(Qn), n=1, 2, ..., N, withz p(en) = 1, such that )
n=1

Q)‘ \ (f) = p(en) $f), n=1,2, ..., N (3. 3) n
n n

At this point, because of a limiting process to be carried out

later, it is desirable to introduce one additional assumption:

— -

[ama = 1 (3.4)

II1-2




We have (3. 5)
2 2
= = = 5 $
Qh h écos% >, cosB ) cos C’n é)\ > cos np(en)
nn nn n n n n
Also, by assumption (4) and formula (3. 1) we get
-cos 9 v - k®h (3. 6)
n n n
Hence by (2. 7),
-cosh @ = K¢ =Kcoszc3p(°)*i’ (3.7)
n v h h h n" ' 'n’ )
n n nn
where
@x© o
K(f) = f k(t)e 12Tt g¢
is the Fourier trar.sform of k(t). That is,
Qv o< K cos an(en) $ (3. 8)
nn
From assumption (4) and (2.7) we get
x| k|
v T ke, ke T OIKD = KD R £
nn n n nn
Now, 1 'om (2.5) and assumption (3a) we get
> s (zr:q ol 3 (3. 10
3 = = cos p(o ) . 10)
hh n=1 hnhn n=1 n n
II1-3
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Similarly from 'R, 8) aad (3. 9) we get

= % q A ] 3.11
th (n:l cos np( n))K ( )
and
' N \ 2 2
= M) = |
8 (n;;l p(en)l k| & = |k| @ (3. 12)
Therefore N 5
2 '_ A l
.. E ] :1_:.1 cos & p(8 ) K &
i th{,vv i N 2 2
El cos Bn p(en) $ |K| ]
or, finally,
(& ] ‘
cos A p(9)
c - 1 n n (3' 13)

2
cos enp(en)

WMz (3

1

We call p(en) the (discrete) azimuthal pov:-« distribution function,

Thus (3.13) gives the cohcrence C between vcrtical and horizontal for N discrete

single-mode Rayleigh sources with azimithal power distribution function p(9n).

B. CONTINUOUS SOURCE

It is of interest to derive a formula, similar to (3.13), giving

the coherence for the case of uncorrelated single -mode Rayleigh noise

arriving fromthe continuous range of azimuth -m < 8 < 1, with a continuous

azimuthal power density function P(8).

The meaning of the underlined phrase requires some clarification.

Throughout this study, nbise arriving frorm a cortinuous range of azimuths will

be regarded as a limiting case of the problemn we have already considered

involving a finite number N of uncorre’ated sources, where N = «» and the

I11-4

e S P ) f ] o A
5 a . S




e — e ——

azimuthal separation between sources - 0. We will take the limit in such

a way that the total vertical power remains constant.
Thus, suppose P(9) is a non-negative, Riemann-integrable

function defined on I—TT, TTI such that

i)
f P(9)d8 = 1 (3. 14)
-1

and suppose % (f) is an autopower spectrum such that
-]

[ B(f)df = 1

-0

We call P(€) a continuous azimuthal power distribution

function. Intuitively, we will think of P(9) as defining the distribution of

source power with regard to azimuth, for a single-mode Rayleigh source

' distributed over the whole range cf p.ssible azimuths,

Identifying the endpoints of the inteval [—n, nJ, let -1 =

I < < < < < = in
\ BN 91 92 ... eN-l eN T and define

V [ &
| f““p(e)de,n=1, 2, ..., N-l
5

’ n
P(8,) =

8
| fOIP(e)de,n=N

} ~

N
Then E p(8 ) = 1, and if we have uncorrelated Rayleigh
n=1 n

sources at the azimuths 91, . + + ; 9. with inline horizontal autopower spectra

N
p(Bl) $, .. .., p(GN) $, then the coherence will be, by (3.13),

II-5
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fen+l 2
0 cos HP(A)c3

% 2
5 (%
c i ln=1 cos enp( n)j
ql" T en i N 2
8 g
212;"1 cos .n,(un)
N J'en+l ¢
Z 8 cos 5 P(8) df
~ n=1 n n 1
N -8
Z Je i cos2 ’an(e)dB
n=1 n
If we let N increase in such a way that min |6 1" 8 |
1<nsN " "
= 0, then it is easily shown that
2
N en+l
2 fe cos BP(H) dé
n=1 n
C — C = - !
91, . GN %
n-=

-

- 2
'[rr cos 9 F(8) de]

[ cos2 8 P(8) db

In this sense we say that the formula

n 2
[]:n cos B P(8) de]

m 2
[ cos 6BP(8) db

a7

C =

gives the coherence between vertical and horizontal for a two-component
seismometer in a single-mode Rayleigh field witn continuous azimuthal

power distribution function P(8).

(3.16)

(3.17)




Having obtained formulas (3, 13) and (3.17), we shall now use
these formulas to calculate coherence for several examples of 2zimuthal
power distribution functions. The coherence C between v and h ranges
from O (nv prediction capability) to 1 (perfect predictability). A single
discrete source will yield C=1, provided its azimuth @ is not equal to
i% . More generally, (see formula (3.13)), C=1 whenever only two sources
are present and their azimuths satisfy 81 = -62, 61 # 1—121.

distributed arbitrarily between these two sources; e. g., one source may

(Power may be

have zero power.) It may be shown that this is the only situation for

which C =1,
2. C=0

The other extreme, C=0, can occur in many ways. The most
important cases for which C=0 are the following:
I
2
] i m
Formula (3.17) shows that if P(3 - 6) = P (z + 0)
for all 6, then C =0,

(1) Symmetry About

(2) Periodicity

i
If there exists an integer S 2 2 such that P(8 + 2?) = P(6)
for all 6, then C = 0. This follows from (3.7) and the fact that

S
E cos(glc + 6): 0

k=1 <
for all positive integers S 2 2 and real numbers 6. An important example

which satisfies both (1) and (2) is the isotropic distribution:

1
P(O) =5

I -7
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However, it is possible for the coherence to be quite large,
even for certain ra‘“er widely distributed sources, as we shall illustrate

with the three samples which follow. (See Figure III-1.)

3. Discrete Point Sources of Equal Power Located at Azimuths u-¢g and 1+ p

Consider the discrete zzimuthal power distribution fun~tion
plu-p) =1/2, p(h+p) =1/2. For this case, the coherence computed by
(3.13) is

2

1 1
— cos (M-P) + — cos (it+p) 2 2
C _'2 2 | 2 cos M cos P (3. 18)

! 2 1+ 2 2
2 cos2 (4 -0) +l? cos (4+P) COs & |l cos&p

A tabulation of the prediction error l-Cu ; for several values of 4 and ¢

is given in Table III-1.
4, Uniform Distribution From u-p to 4+ p

Let 1

Spe H-P S8+t

P(R) =
0, otherwise

This represents a uniform distribution of power coming from

a wedge of azimuths with width 2p and center angle u. By (3.17) the

coherence is 5 31
[1 fu+p ] (3.19)
—_ 8de . . 2
c _ 20 Ju_p cos - lsm(u+ p) - sin{u - p)
M, P i l.u.;.p 2 2h lp A sin(Z2u + 2p) - sin(2u - 2p)
>0 ) cos H6d9 4
Pep-p

4 COSZ M sinz o

o(2p + cos 2 sin 2p)

A tabulation of l-C‘_1 5 for certain values of 4 and p is given

in Table III-2,

111-8
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Table III-1

VALUES OF 1-C FOR TWO DISCRETE SOURCES OFf EQU.1L POWER
LOCATED AT AZIMUTHS, u - p AND u+ p. (4, ¢ IN DEGREES)

D M 0 10 20 30 60 90 |
5,175 | 0.000 0.000 | 0.701 | 0.003 0.022 1. 000
10:178 | 0.000 0.001 | 0.004 | 0.010 0.085 1.C00
15;165 | 0.000 0.002 | 0.009 | 0.023 0.177 1. 000
20;160 | 0.000 0.004 | 0.017 | 0.042 0. 284 1050
25;155 | 0.000 0.007 | 0.028 | 0.068 0. 395 1. 000
30;150 | 0.090 0.010 | 0.042 | 0.100 0.500 i.000
35;145 | €.000 0.015 | 0.061 | 0.140 0.595 1. 000
40 ;140 | 0,009 0.021 | 0.085 | 0.190 0.678 1. 000
45;135 | 0,000 0.030 | 0.117 | 0,250 0.750 1.000
50;130 | 0.000 0.042 | 0.158 | 0.321 0.810 1.000
55;125 | 0.000 0.060 | 0.213 | 0.405 0. 860 1. 000
60;120 | 0.000 0.085 | 0.284 | 0,500 0. 900 1. 000
65;115 | 0.000 0.125 | 0.379 | 0.605 0.932 1. 000
70;110 | 0.000 0.190 | 0.500 | 0.716 0.958 1.000
75;105 | 0,000 0.302 | 0.649 | 0,823 0.977 1.6CO
80;100 { 0.000 0.500 | 0.810 | 0.914 0.990 1.009
85;95 0.000 0.80z | 0.945 | 0.977 0. 997 1.000
90 1,000 | 1,000 | 1,000 1. 000 1. 000
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Table III -2
l VALUES OF 1-C FOR UNIFORM DISTRIBUTION
FROM u-p0 TO u+¢ (4,p IN DEGKEES)
|
; : L
l N 0 10 20 30 60 | 90
5 0. 000 0.000 | 0.000 | 0.001 0.098 1.C00
l 15 0. 000 0.051 | 0.003 | 0.008 0. 065 1. 000
25 G. 001 0.003 | ¢.C09 | 0.022 0. 164 1. 000
l 35 0.003 0.007 | 0.020 | 0.045 0. 284 1. 000
45 0. 009 0.016 | 0.038 | 0.078 0. 405 1.000
l 55 0. 022 0.033 | 0.065 | 0.122 0.518 1. 000
65 0. 046 0.060 | 0.104 | 0,181 0. 616 1. 000
| l 75 0. 086 0.105 | 0.161 | 0.254 0. 699 1. 000
85 0.148 0.171 | 0.238 | 0.343 0.768 1. 000
' 95 0.238 0.264 | 0.336 | 0.444 0. 824 1. 000
105 0. 357 0.382 | 0.452 | 0.553 0.870 1. 000
l ' 115 | 0,496 0.518 | 0.578 | 0. 662 . 907 1.000
125 0. 641 0.657 | 0.702 | 0.763 0. 936 1. 000
l 135 0,771 0.782 | 0.810 | 0.849 0. 959 1. 000
145 0.874 0.879 | 0.894 | 0.915 0.976 1. 000
. 155 0. 943 0.945 | 0.952 | 0.961 0. 989 1. 000
: 165 0. 982 0.983 | 0.985 | 0.987 0.996 1. 000
l 175 0. 998 0.998 | 0.999 | 0.999 1. 000 1. 000
l 180 1. 000 1.000 | 1.000 | 1.000 1. 000 1. 000
|
|
' I1-11
I
SR o




5. Cos2 Distribution

Consider the continuous azimuthal power density function

1 2 |
™ &L (;5 (9-u)). M-ps B spu+op
P(8) =
\ 0, otherwise

Using formula (3. 17), we find, for p # -g- p#m

e Sl S R $SAEE $SaEn $SEE02 A

2
Z-TT2 2 . 2
__”1.‘.2 ) pz cos M sin p
C = * '30
M, P 2 (3.20)
2p 1Ip +——2—-—2— cos 2M sin 2p
l 2t -8¢
and L
] 1
4 2
- 16 cos |
C - S (3n) 2 (3.21) J
p,—z— 1+2cos
" |
cos
C[J., 11 2 P
1
A tabulation of I-CH 5 for several values of U, p is given ‘
in Table III-3, d
L
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VALUES OF 1-C FOR COS2 DISTRIBUTION

Table III-3

(4, ¢ IN DEGR:ES)

0 Q 0 10 20 30 60 90
5 0. 000 0. 000 0. 000 0.000 0.003 1. 000
15 0.000 0. 000 0.001 0.003 0.026 1. 000
25 0.000 0.001 0.004 0.008 0. 070 1.000
35 0.001 0. 002 0.0C7 G.017 0.129 1.000
45 0. 002 0,005 0.013 0.029 0.199 1. 000
55 0. 005 0. 009 0.021 0. 044 0.273 1. 000
65 0.010 0.016 0.032 0. M64 0. 348 1. 000
75 0.019 0.026 0.048 0.089 0. 420 1. 000
85 0. 031 0. 040 0. 068 0.118 0. 488 1.000
90 0.039 0.049 0. 080 0.135 0. 520 1. 000
95 0. 049 0. 060 0.094 0.154 0. 550 1. 000
105 0.073 0.086 0.126 0.195 0. 607 1. 000
115 0.106 0.120 0.165 0.241 0. 657 1.000
125 0. 146 0.162 0.211 6.293 0.703 1.000
135 0.196 0.213 0.265 0.349 0.743 1. 000
145 0.253 0.271 0.324 0. 409 0.779 1.000
155 0.319 0. 336 0. 389 0.471 0. 811 1. 000
165 0. 389 0. 406 0. 456 0. 534 0. 839 1.000
175 0.463 0.479 0. 525 0.595 0. 864 1.000
180 0. 500 0.515 0.558 0. 625 0. 875 1. 020
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SECTION IV
FFFECT OF ADDITIONAL RANDOM UNCORRELATED NOISE

The cohercace between vertical and horizontal for the case
we bave considered in Section III will be reduced if the se'smometer outputs
v and/or h contain an additional component of random, uncorrelated noise;

e.g., amplifier noise.

Consider the following quite general problem: we are given
two stationary random processes v and h, with coherence C, if vl =v+ z,
h =h + x, where z and » are stationary random processes uncorrelated
to v, h, and uncorreclated to each other, then what is the coherenze C

between vl and hl ?

We have
$ = & (4. 1)
11
v h vh
¢ 11 = vi * sz
v Vv
$ = § + &
] 1
hh hh XX
Therefore, ,
2 (4. 2)
le | !
Cl _ vh _ 1 . . C
—(’b + % ) (@ + & ) - $ $
vV zz hh XX 1 4+ _2zz 1+ XX
vi th

We see from equation (4. 2) that the effect on coherence depends upon the

ratios § $ and % $ . Inthe case that v and h are the vertical
zzf vv xx/ hh

or horizontal components of displacement due to a single-mode Rayleigh

field with some azimuthal power distribution, P(€), and if we conceive

that & , & , and ¢ remain fixed as we vary P(8), we see that the
Y44 vv XX

oy



|

greatest reduction in coherence results when F(8) is strongly concentrated I
near i—;- , for then, by equation (3.10), th will be very small., For example, l '
: < 1 < ! *
if éhh éxx’ then C 1/2 C, by (4. 2).
-
For any real numbers @, 8 with0 < a =<1, 0 < B8 < 1, itis i
true that [

o N R B I ]

1 1
<1+<1) (1+B) = l-0 -8

Therefore, if |

<
sz < vi’ Zi>xx th (4.3)
then , 8 3
c = |1 - %z - 3’95 7 (4. 4)
vV hh

Formula (4. 3) is a reasonable assumption if sz and Qxx are interpreted as
Ll

> -
(4. 3) shows that if on each channel the power of amplifier 10ise is less than

amplifier noise, and P(8) is not conczntrated near + Thus, for example,
1 percent of the power of seismic noise, then the coherence is reduced by

less than 2 percent.

We may conclude that for the case of single-mode Rayleigh
waves with an azimuthal power density P(8), the coherence between v and

h will not be seriously affected by the addition of a realistic amount of

m
amplifier noise on both channels, unless P(8) is concentrated near i? .

= - e
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SECTION V
LLOVE WAVES

We shall discuss in this section the limitation upon prediction
capability imposed by the addition of l.ove (SH) waves on the horizontal

channel. It will always be assumed that the Love waves are uncorrelated

with the Rayleigh waves.

A. GENERAL FORMULA FOR EFFECT OF LOVE WAVES ON COHERENCE

Suppose we have N sources, at azimuths 91, .« «, 8, each

N

source generating Rayleigh noise, with components vn, )‘n’ hn as in Section

th . .
III. Suppose also that the n  source generates Love wave noise with motion

j_ in the direction & + m/2.
n n

In addition to the assumptions of Section III, parcgraph A,

we assume

(1) For each n, jn(t) is a stationary random process
(2) There exists an autopower spectrum {i(f) and constants

N
q(9n) such that 2 q(en) = 1 and ij = q(en)Q,

n=1 n'n
n-= l, 2, . ’ N
and
(3) The crosspower spectra §, . =0, m# n and
m'n
The crosspower spectra $, y = 0 for all m, n.
m n
1 Let us define
=) i 8 .
l wn(t) sin 9 (t) (5.1)
: and N
1 w(t) =35 w_(t) (5. 2)
n=1




Clearly W is the contribution to the output of the horizontal
th
seismometer due to Love waves from the n  source, and w(t) is the total

Love component on the horizontal.

Let L(f) be defined by the relationshir

Q(f) = L(f) & (£) (5. 3)

Then (cf. 3.10) we find

; 4 gin 5 q(6
= sin 9 q(f ) (5. 4)
ww o & n
N
=9, sin“8 q(8)+L - &
n=1
Thus, if CL = coherence between v .nd h+w,
2
IQvh
C = (5.5)
= i@hh * @wwl vi

N 2
[z_: cos 9 p(e) |K| @2

Z cos 8 p(9)@+ LE sm 8 q(G)@]lKl $

n=1 n=1

by Equations (3.10) - (3.12), (5.4). Hence

[Z cos © p(B )

CL =

Z cos2 9 p(B) + Lz sin2 Bnq(en)

We call q(en) the (discrete) azimuthal power distribution function
for the Love waves. As before, we can obtain a formula similar to (5. 6)
giving the coherence for a continuous azimuthal power distribution Q(6)

for the Love waves:

e




18 2

[["Y cos 73 P(G)df:J

C. = = (5.7)

L 2 T 5
/_-TCOS SP(5) a4 + L‘f_r, sin” 5 Q (%) d5

Ncte that (5. 6) and (5.7) reducc to (3.13) and (3.17) respectively,
on setting L = 0,

B. ISOTROPIC LOVE WAVES

It is best to regard the case of isotropic Love waves
(Q(G) = -IF) as a special case of the situation discussed in Section 1V, That is,
the Love wave energy on the horizontal is simply uncorrelated additive noise
on the predicting channel, and its effect upon coherence is mathematically

indistinguishable from that of, say, amplifier noise.

Thus, if C is the coherence between v and h, we have by

(4. 2) that

$
hh
C =je———1 *C (5.8)
L th + wa

If % is large, there is a substantial reduction in coherence.
wWw

For, recall (cf. 3.10) that

= )
2
= % <
th f cos 9P(6) d8 $
-1
Also, by (5. 4)
m
$ =/si1128 lde L - % :-I-LQ
wwW 2T 2
2
Therefore
_QPL__ < ¢ . 2
Yh+ b+~ L3 SR
ALY 2
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Hence, 2
S {——] ¢ y i 3 5.

CL (2 : L) C isotropic Love wave (5.9)

Formula (5. 9) implies, for example, that if L = 2, then the

coherence CL is never greater than 1/2,

C. LOVE WAVES WITH SAME DISTRIBUTION AS THE RAYLEiIGH WAVES

If the Love wave field is non-isotropic, formula 5. 8 still
holds. But in this case it may be misleading to regard the Love waves
cimply as additive uncorrelated noise, because wa depends upon the
orientation of our horizontul seismometer. That is, by pointing our
horizeontal seismometer in the proper direction, it may be possible to

make & quite small,
wWw

To illustrate this phenomenon, consider the situation in
which the Love waves have the same azimuthal power distribution as the

Rayleigh waves; i. e.,
Q(8) = P(8)

Then (5.7) becomes

2

I

[[ ! (5.11)

~T cos 8 PJG)dGJ

cC. = —
L (T

J

m ;
s0s° 9P (8)d6 + Lf sin“ 8 P(6) d6
m -1
If in the distributions P(8) considered in Section III, paragraph C,
we specify the values of p and L, then the coherence C, calculated by (5.11) is
maximized fcr 4 = 0. For W= 0, we get surprisingl{ higi.. coherence, even
for L as large as 10 (See Tables V-1, V-2). For example, for a iform

dist .bution from -25° to +25° and L = 10, tke prediction error is only

0. 395 (Table V-2).

Hﬁf{.\__. g d; .' Juatome - a5 ¥ 3
i 3 3

e




Table V-1

VALUES OF 1 -C FOR DISCRETE SOURCES AT AZIMUTHS + ¢
WITH INLINE LOVE POWER = L x INLINE RAYLEIGH POWER

"ADegres) L=190 L=01 L=1.0 L=l o
3, 175 0,000 0.001 0.008 0,071
15, 165 0,000 0,007 0.067 0. 41%
¢5, 155 0,000 0.0 0,179 0. 6%5
15, 145 0.000 0.047 0. 329 0,45l
45; 13% 0,000 0.091 0,500 6,909
55, 125 0. 000 0.169 0.671 0,953
65; 115 0,000 0. 315 0.821 0.979
75; 105 0.000 0. 582 0.933 0.993
85; 95 0.000 0.1229 0.992 0.999

VALUES OF |-C FOR UNIFORM RAYLEIGH DISTRIBUTION FROM -p TO +9p
WITH INLINE LOVE POWER = L x INLINE RAYLEIGH POWER

T
|
|
I
|
|
!
l

1
I,
|;
l
l
l
l
l
l.
l

n {Degrecs) L=0 L=0,1 L=1.0 L=10.0
5 0,000 0.000 0.0C: 0,025
15 0. 000 0.002 0.023 0. 187
25 0.001 0.007 .. ube i 0.395
35 0.003% 9.016 0.118 0,568
45 0.009 0.030 0. 189 0.692
55 0.022 0.054 0.271 0.779
65 0. 046 0,091 0,361 0.840
75 0.086 0.143 0.455 0.882
85 0.148 0.217 0.549 0.914
95 0.238 0.°14 0.639 0.9237
105 0. 357 0.431 0.722 0. 955
115 0.496 0.5cl 0.796 0.968
125 0. 641 0. 689 0. 859 0.978
135 0.77) 0.802 0.910 0. 986
145 0.874 0.890 0. 949 0.99¢
155 0.943 0. 950 0.976 0. 996
165 0.982 0. 984 0.992 0. 999
175 0. 998 0.998 0.999 1.000
4 180 1.0G0 1.000 1.000 1.000
V-5/6
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SECTION VI
EFFECT OF GAIN FLUCTUATION

In the preceding sections we have assumed implicitly that
the amplitude gains of our two seismometers are constant functions of time,
In practice, however, these gains vary slcwly with time, and are never
known precisely. This results in a lower observable coherence between
the two channels than is indicated by our previous equations. Fortunately,
this effect is not serious if the gain fluctuations are reasonably small and

vell -pehaved.

For, let r = r(t) aa s = s(t) be the gains of the veiti~-1
and horizcntal seismometers respectively., We ass'mc that ;i and s are

non-negative variables satisfying:

(1) r(t) and s(t) arc statistically independznt stationary
random processes, with first order probability

functions Qr and Qs’ respectively

(2) During any short interval of time during wnich
we continuously record data for use in an experi-
tal det ination of , O , th
men etermination o vav’ vah r whh e
variations in the gains are so slight that we may
consider the gains to be constant throughout

12t interval

With these assumptions, suppose now that a certain noise
situation persists for many days; that is, the actual correlations cpvv,
L and Lphh, and the azimuthal power distribution function P(9) remain
unchanged over an extended period of timme. During this period let us
repeatedly use our two seismometers to measure ? D on’ and on The
gains r and s are varying during this period, but in accordance with

assumption (2), we make the approximation that r and s remain constant

VI-1



throughout each interval of measurement, Then, the observed correlations

determined by measurement beginning at time t are

2 2
r(t) @ r(t) s(8) ), and s(t)” o

Taking the averages of these correlations for many different

values of t, we obtain the average observed correlati , , and
4 ed correlations ¢vv ¢vh n

¢hh' Thus
¢ = r(t) o
vv (6. 1)
dp = TEO @
pp = SV @
We define C’, the observed coherence, by
4 Iz (__ 2 2
o L r(t)s(t)) e .|
= ?-—Qh”— = =-.—?—-_z_— (6. 2)
vv 'hh r(t)© s(t) vighh
Therefore,
( 2
r(t) S(t))
C C (6. 3)
w2 s(t)° |

where C is the coherence between v and h that would be observed by

seismometers having no gain fluctuation,

The mathematical significance of C' lies in the fact that
1-C" is the relative predicticn error corresponding to the optimum Wiener
prediction filter transfer function G(f) to be applied to h for predicting v in

the variable gain situation.

Vi-2

E TR Al N b Sl st G Daed Gl Gamd  Bued e Bl Sad B B ENR W)




In greater detail: let g(t) be a convolution operator, G(f) =
Fourier transform of g, and define e = v - (g®h). Let ¢ee be the average
observed autocourrelation function of e (cf. the definition of ¢vv’ ¢ . and ¢ h)
and let Pe(f) be the Fourier transform of ¢ee

Take G{f) = ggf;’ where A and B are the Fourier transforms of

¢vh and ¢hh respectively; it may be shown that this choice of the filter
transfer function G is optimal in the sense that it minimizes the average

error power ®

/ P_(f) af

- @

Furthermore, we find that for this choice of G,

/°° P_(f) df = D(f) [1- c” ) ]

-0

where D(f) is the Fourier transform of ¢

Now, by ergodicity of the time series r(t) and s(t), (6. 3).

may be written

2
[f Q_(x)Q_ly) dx dY]
* C (6. 4)
/ Q_(x) d"é Q_(y)ay
or, since r(t) and s(t) are statistically independent,
[/ Q (x)dx] [f Q (y)dy]
* C (6.5)
j Q, wlax - [ ain?ay
0
HZ M
_ r s

where 4 and us are the means of the distributions Qr and Qs respectively,
r

and 02 and 02 are the corresponding variances.
r s
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1t is clear from formula (6. 5) that the effect on coherence
2 2
due to gain fluctuation is small if the variances Ur and Os are small cormn-
2
pared to ui and Lls. To illustrate the quantitative effect of gain fluctuation

on coherence, we consider two examples of gain probability distributions.
Example 1., Uniform Distribation from 0 to R

Let R b= an arbitrarily large positive number and let

1

R <
Q(x) = Q) = OFXER

0, otherwise
Thex corz:pute from (6. 5) that

C = C

ho

TFrus in the rather extreme case that the gains are evenly distributed

between 0 and some large number, the coherence is reduced by less than

a factor of 2,
Example 2. Log (gain) Normally Distributed

Suppose that the random variables log r and log s both are

e g e . . 2
norma: ¢ distributed with mean 0 and variance 0 . Then

» €3 2
= . = yl 1 =Y
Moo= us = ](; e Qr(x) dx = ]_m e [m exp (202)]dy
2
: - (y=o? 2 |
_ 2 1 - \ly-o% _ .8 2 l
= e om [w exp ( 202 )dy = e~ g /2 .
Also, J
o 2
2 2 2 2 _r®.2 2 1 -y
ur + or = us + Os -](; X Qr(x)dx =[-m e ‘mexp(zoz)] dy ]
. Zo‘:‘ 1 J" ’-(2-202)2 o o 207
e .vaTo ) @ exp 202 Yy = e ]
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Therefore, by (6.5)

Zz 22
2 ()
2 2 2
” -
C =—e——2— . --e_z. . C = ezc C (6.6)
20C 20
e e
2

In Table VI-1, ur, U: , and e 20 are tabulated for sev<:al

R 2
vaiues of 0 ,

We see from Table VI-1 thatin Example ¢ (which is probably
a more realistic gain distribution than Exarnple 1) a severe loss in coherence
results if Of is allowed to be as large as, say, 1. It should be possible,
however, through a program of peridical calibration, to insure that the
seismometer gain fluctuations remain within acceptable limits, This will
be necessary i one is to implement a processor in which the prediction

filter applied to h for predicting v remains unchanged for an extended

period of time,

Table VI-1
EFFECT OF GAIN FLUCTUATION ON COHERENCE FOR log /gain)
NORMALLY DISTRIBUTED, MEAN = 0, VARIANCE = 02
02 7} 02 -20 2
r r e
0 1 0 1
0,01 1,0051 0.0101 0.9802
0.1 1,0513 0.1162 0.8187
0.3 1.1618 0,.4722 0, 5488
0.5 1.2840 1, 069€ 0. 3679
1.0 1,6487 4, 6708 Cc.1383
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SECTION VII
MULTIMODE NOISE

In Sectinns III through VI we have discussed the ccherence
between vertical and horizont?! seismometers at point location in a single-
mode noise field, with the possible addition of Lcve waves on the horizontal,
For the same two-channel system, we shall now obtain formulas for coherence
between v and h in the more general case that not one, bhut several modes of

noise are present,

As in Section lil, assume we have a two-component seis~-
mometer located at the origin O of an X-Y coordinate system in the plane,
Let 91_. 92, . e e GN be azimuths; for eachn=1, 2, , . ., N, we have a
noise generator at azimuth Gn.

Let Vo and kn be the respective outputs,due to noise from
the nth source, of a vertical seismometer at P and an inline horizontal
seismometer at P,

st
b

We assume that

Mo Mo
vpTX vy A =Y A (7.1)
m=0 m=0

m m : ; s .
where v and )\n are respectively the vertical and inline horizontal

. th
components of mth noise mode from the n source, m=0, 1, 2, , ., ., M.

th
Also, we assumesa that the n  scurce generates Love (SH)

noise with motion j, in the direction 8 + rE

n
)\m

We make the following basic assumptions about v »
n n

and jn:

Notation: numerical subscripts refer to the source; superscripts refer

to the mode.

VII-1



VII-2

(1)

(2)

(3)

(4)

m . .
)\n end j are stationary random processes, for all n, m,

For eachm =0, 1, 2, ., . ., M, there exists an autopower

spectrum @m, and constants pm(en), such thot

N
Epm(en) = 1
n=1 '
and
m m
Q)\mkm = p (Gn)Q , n=1,2,,,., N
n n

There exists an autopower spectrum {1 and constants

q(en) such that

N
)'_:q( en) = 1
n=1

and

& . = q€)0,n=12 ..., N

Inn

)\r:n and )\: are uncorrelated unless n =v and m = |,

)\; and j‘_1 are uncorrelated for all n, m, H,

For each m, there exists a function km(t) with

[“’ K™ (t) | at < =

such that

vii = K™ @™ foralln=1,2, ..., N
n n



Having made these assumptions, let us define

h (t) = -cos 5 1 (t) (7. 2)

= sin & j (t
wn(t) sin an()

N
h(t) =2 hn(t)
n=1

N
w(t) = E wn(t)
n=1

N
vit) =) vn(t)

n=1

Clearly hn 25 W is the contribution to the output of our
. . th . . .
horizontal seismometer due to the n source (Wn is the Love wave contribution);
h(t) + w(t) and v(t) are respectively, the total horizontal and vertical seismo-
grams.,

We proceed to find the c.. 2rence

2
C = IQV, h+w|

$
vv h+w,htw
between v and h+w,
m . m
As before, let K be the Fourier transform of k , m = 0,

1,2, . . ., M, and let L(f) be defined by

m

M
Q) = LIDY, & (f) (7. 4)
m=0

L(f) is thus a measure of the ratio of inline Love power to total inline

SV+P power . l
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Omitting the calculations, which are but a slight generalization of

the corresponding calculations in Sections III and V, we find

N |
m m m +
v,htw -él =0 cos en P (en) K9 (7. 5)
2 |
b =% k™| ™
vv m=0
and M l
2 m m
h+w, h+w % Z B P (en) g P

3 i 29 ]
+nz=l sin nq‘( n)Q

One can now substitute (7. 5) into (7, 3) and obtain the general
multimode coherence., However, we shall now restrict ourselves to a simpler ﬁ

case; namely, we make one additional assumption:

(5) All of the azimuthal power distribution functions are

. 0 1 m
equal, 1,e,, p =p S e e e =P =q. [

Letting p be the azimuthal power distribution function common
to all modes, in accordance with assumption (5), we find from (7, 3), (7.4) and

(7. 5) that the coherence is:

(Eees 00| & e
.m .m
2 cos & p(0 ) & KT |

(7. 6)

C =

8 p(b in_ 8 p(8 .
P cos np( n) + L n=1sm np( n) & ® rréo ,K I $
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i |

. TP

= e

As before, we can write a similar formula for the case of a

continuous azimuthal power distribution function P(3);

R 2 M 2 (7.7)
[] cos SP(8) d‘)J IZ k™ g™
il m=0
C = .
o, T N M >
f cos HP(%)d" +LJ sin” §P(5) d% Z 3™ - z |Km‘ 3™
SV -7 m=0 0

IFormula for multimode coherence, all modes having same

azimuthal power distribution fuaction P(6),

Comparison of (7.7) with (5.11) shows that (Multimode

coherence) = Q (f) X (Single-mode coherence), where

(7. 8)
|xm‘2 g

is a function depending only on the autopower spectra ¢™ and modal horizontal -
vertical iransfer functions K' . Since we have already investigated single-mode
coherence in Sections III through VI, the study of multimode coherence for the

case that all modes h: e the same azimuthal power distribution function reduces

to a consideration of the function Q(f).

Detailed examination of the behavior of Q(f) for realistic
m m .
choices cf the ¥ 's and K 's has not been carried sut, However, we can

make a few elementary remarks.

First, it should be noted that the presence of more than one
mode always results in a reduction in coherence from the single -mode case.
For, it follows from Hélder's inequality that (for real frequencies) 0 < Q(f) <1,
Furthermore, assuming all ¢ to be non-zero, we have Q(f) <1 unless KO =K! =

...=K™
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In a physical situation, it is extremely unlikely that all the
transfer functions K would be equal, or nearly so, Approximately, we
might expect that there would exist positive constants RO’ Rl’ T

M
such that over a fairly broad band of frequencies we have

K" = +iR , m=0,1, ..., M
m

; 1
Take as an example the case M = ! (two modes), and let 8 = 8 , Let R

be any positive number. Table VII-1 shows vzlues of Q computed by

(7.8) for several choices of KO, Kl.

Table VII-1
VALUES OF Q FOR TWO-MODT CAS%, 8 = ¢!
KO Kl | Q
+iR +iR 1
+iR + 21K 9/10
+iR + 5iR 9/13
+iR + biR (b+1)% /2 (b2 +1), b>0
+iR -iR 0

Table VII-1 illustrates a general principic, which is
roughly as follows: the reduction in coherence due to additional modes is most
severe in the case that some of the K™ 's represent +90° phase shift and others,
a -90° phase shift; for frequencies where all K™'s have the same phase response,
the effect is less marked. Indeed, for the two-mode case, we get as low as
Q = 0 if KO and K1 have opposite phase responses, whereas Q >1 if KO and K1

2
have the same phase responses,
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Given an azimuthal power distribution function P(%) it is
apparent that if several modes are present with approximately equal power
in each mode, then the coherence is likely to be substantially reduced from
that for a single mode with the same distribution P(%), On the other hand,
in closing this section it should be remarked that it also follows from (7. 8) that
if one mode--siy, the fundamental Rayleigh mode--accounts for all but a small

amount of the total power, then there will be very little reduction in coherence

from the single-mode case.
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SECTION VII1
DISCUSSION

In the preceding sections, mathernatical formulae have been
derived for the noise-rejection properties of a 2-component seismometer,
consisting of 1 vertical-component and 1 horizontal-component instrument
at the same point., For most applications, this system may be considered
equivalent to a 3-component seismometer, It is possible to designa
processing system wherein different filters are applied to the outputs of
¢ horizontals and the noise estimate is obtained by summing the filter
outputs. This case is not covered by the development of Part I, but the
simpler case, in which the horizontal outpus are summed and then a
filter is applied, has been treated explicitly. This is be:ause an arbitrarily
weighted sumn of 2 horizontal components of ground motion must always be

equivalent to a single component in a direction defined by the weights.

Some general conclusions may be stated regarding the
usefulness of a single horizontal-component instrument for eliminating
noise from the output of a sertical instrument at the same location, It
would appear that such effects as system noise, gain fluctuations and Love
waves need not present serious problems, although in some cases they
may very well do so, The most important consideration is usually the
properties of the noise to be eliminated. If significant noise rejection is
to be achieved, then some rather stringent conditions must be satisfied.
Even when there is only a single-noise mode present, it is essential that the
azimuths of the noise sourcas be confined within a range somewhat less
than 180° and that the horizontal be oriented near the center of this range.
This requirement follows frocin the obvious fact that a filter which cancels
out noise traveling in a given directicn must also amplify noise traveling in

the opposite direction. In practice, such extreme directional properties

are seldom found.
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If more than one noise mocde is important, large diff.rences

in the horizontal-to-verfical transfer functions, k(t), cannot be permitted,
In Section VIi, a two-mode situation is presented in which no noise rejection
is possible because one mode is characterized by a prograde particle motion

and the other is associated with retrograde motion.

With a 3-component seismometer at point location, it is
theoretically possible to determine both the direction of propagation and
the shape of the particle orbit for an observed Rayleigh wave. However,
the sense of propagation and the sense of the orbital motion cannot be found
unless a spatial separation is introduced into the system. For this reason
it is concluded that ordinary 3-component systems offer little promise for
most applications and that attention must be directed toward arrays of

horizontal- and vertical-component seismometers.
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SECTION IX

FORMULAS FOR ARRAY RESPONSE IN SINGLE-MODE
NOISE WITH ARBITRARY AZIMUTHAL POWER DISTRIBUTION

A. DESCRIPTION OF ARRAY

Let O be the origin of an X-Y coordinate system in the plane
of the earth's surface. We consider an array of seismometers coasisting
of a vertical seismometer v located at O, and M horizontal seismometers

th . . .
h,, h,, . . ., h ,, wherethe m horizon‘al seismometer h is located
1 2 M m
at the point P_ having polar coordinates (r_, p ), and h is oriented in
m m m m

the direction wm (Figure IX-1),

Figure IX-1. Generalized Seiemometer Array
Configuration
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B. ASSUMPTIONS ABO'IT THE NOISE FIELD

We wich to examine, for this array, the extent to which
noise on the vertical can bz predicted from noise on the horizontals in
single-mode trapped noise, Wemake the same assumptions about the
noise field as we did in Section III, plu¢ two additional assumptions,
stated below. To simplify the calculations, let us start with a continuous
azimuthal power distribution function P(6), bearing in mind that this is the
limiting ca2se of a discrete azimuthal , ower distribution function, Recalling

our previous notation, we have

P(8) = azimuthal power distribution function (9.1)
$(f) = inline horizontal autopower spectrum

K(f)

inline horizontal-vertical transfer function

As mentioned above, we will make two additional assumptions
about the noise field; these assumptions are not stringent, and they are made
in order to allow us to derive simple expressions for the crosspower spectra

between spatially separated seismometers, We assume

(1) Noise from each direction propagates in plane waves

(2) Let h and h' be the outputs of two horizontal seismometers
located at points A and B respectively; let r be the vector
beginning at A and ending at B; let both seismometers be

-)
pointing in the direction r. Then for a single noise source

- -
generating waves traveling in the directior r, we have

h' = q®h, the Fourier transform of q(t) being (9. 2

Q(f) = exp(2Mir k(f)), wherer = |r |, (9. 3)

k = wave number

See Laster et a1|
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Assumption (}) requires that the distance to the noise sources

not be small relative to the array dimensions, while assumption (2) dermands
that inline horizontal motions at two separated points be related by a transfer

function Q(f) which is pure phase shift at all frequencies,
C. CALCULATION OF AUTOPCWER AND CROSSPOWER SPECTRA

Returning to our array of seismometers v, hl’ » o0 by

le: us derive formulas for

8 , % , etc.
mn' v

Let us first compute the crosspower spectrum between hm and
h , horizontal seismometers locatedatl® =(r , p )andP =(r, p)
n m m’ m n n’ n

respec.ively, and having orientations 'Jln and wn respectively,
1

Let 8 be an angle, and let )\m and )\n be the components of

horizontal motion in the direction 6 at Pm aand Pn respectively, due to noise

from a single source at azimuth 8, and temporarily let hm and hn denote

the contribution from this single source to the seismometer outputs,

Then

h
m

-cos (6 - 'l!m) )‘m (9. 4)

h
n

-cos (0 - wn) )\n
and, by assumptions (1) and (2),

)\m =q® )\n (9. 5)
where the Fourier transform of q(t) is

Q(f) = exp [27 i k(f) (r_ cos(8-P ) -r_cos(B-p ) )| (9. 6)
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Therefore, for a single wave fromn direction 8, we have, by l

(?.4) - (9.6) that

$ = cos (9 - \bm) cos(9 - \bn) Q)\ \ (9.7)

m n

= cos (9 - \bm) cos (8 - ﬁ!n)QQ)\ \
n n

cos(6 - b _)cos(8 -1V )exp IZTT ik (rmcos(e -p )

T cos(9 - pn)) | Q)\n )\n

Crosspower spectrum for
single source

To obtain the crosspower spectrum for the sum of nc'--{.
all sources, we set Q)\ Y = P(0)°% in (9.7) and integrai.. over ali values of !

nn
8 from -T to T,

Therefore the crosspower spectrum between hm Ar hn in a
single-mode noise field with azimuthal power distribution function P(8) is

1)

an = & J’ . cos(6 - Wm) cos(9 - \bn) exp lZT! ik (rmcos(e -pm) (9. 8)

-r_ cos(® - pn))] P(8) db

In casem = n, (9. 8) reduces to

" 2
- @j_n cos? (8- 4_) P(8) d (9. 9)

$
mm

Cf. Eq. 3.10
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A similar computation yields

m
= - 1 o T3 s(5 - 5
va K @J-n cos {6 Jm) exp [2Ti k r cos(% Fim), P(5) d (9.10)

where K(f, is the horizcntal-vertical transfer function. (See Eq. 9.1).

. As hefore (Eq. 3.12),

8 = Ik| @ (9. 11)

D. PREDICTION FILTERS

The optimum prediction filter transfer functions G

m=1, 2, ..., M, are determined by the system of equations (Burg, 1964)
r T B .
4)ll 4)12 e 4)lM Gl 4)vl (9.12)
QMI ........ QMM_ .GM. _QVMJ
where the & |, & are given in Equations (9.8) - (9.10).
mn’ vm
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SECTION X
ISOTROPIC SINGLE-MODE NOISE

In this section we shall consider the theoretical capability of
particular arrays of spatially separated horizontal seismometers for pre-
dicting a vertical component of single-mode isotropic noise. Array geo-

metries will be specified by use of the parameters r wm’ and

m’ Dm.
use will be made of formulas (9. 8) - (9.12).

A. INTEGRAL REPRESENTATIONS OF BESSEL FUNCTIONS

In order to simplify the expressions which will be obtained
in this section, the following integrals are useful. Watson (p. 41) gives the
following form for Poisson's integral representation of the Bessel function

of first kind and of order v.

m/2

v \
Jv(z) = 2(2/21) 1 f cos(z cos ) sinz') g do (10.1)
I‘(V’f?) ”E) 0
Noting taat
r(-i—) = VT andr(3/2) = J/2,
n/2 m
_ i _ _1_ a (10. 2)
J’o(z) = J(; cos(z cos 8) d8 = > J:n cos{z cos 6)d83
(10, 3)
7 (2) n/2 1"
l = 2 I / cos (z cos 8} sir:2 6 db =2-T'TJ‘ cos(z cos 9) !-iin2 8 d6
z n 0 =T

Webster (p. 322) give: the recurrence relation

J, (2)

z

= % [5 2) + 3, (2)



1 ~
1 |
Hence, !
1 (" 2 !
— os 9) si = = 5
S jﬂ cos (z cos 0) sin 6 d6 > JO (z) + J’Z(z) (10. 4)
Subtracting (1C. 4) from (10.2), we obtain
1 (" 2 1
> '[.1'. cos (z cos 9) cos A db = > Jo(z) - Jz(z) (10. 5)
Webster (p. 322) also gives the relation
d
-E; Jo(z) - ‘JI(Z)
Hence, differentiation of (10. 2) yields -
1 (" )
Z?I cos O sin (z cos 8) df = J'l(z)
B. 2-CHANNEL SYSTEM: SEPARATED VERTICAL AND HORIZONTAL i ‘l

Recall from Section 1II that no prediction of a “rertical
component from a horizontal component located at the same point is possible -
in isotropic noise, This fact is one of the most severe limitations on the T

potential use of two-component seismometers at point location, since the

-4

noise at many recording stations appears to be nzarly isotropic.

However, a portion of noise on a vertical seismometer can

N

be predicted from a spatially separated horizontal seismometer, even in

isotropic noise; it is this fact that motivates the study of arrays of the

general type discussed in the last section.

Let us begin by examinirg the prediction capability of the

et ot

following system in single-mcde isotropic noise:




| ——]

L

SYSTEM 0: Veriical seismometer v located at the origin O, and

a single horizontal seismometer h at distance r from the origin, with

azimuth p = 0, and orientation |. (Figure X-1)

Since the noise is isotropic, we substitute P(8) = >n in

formula (9. 10) to obtain th. We get

K$é m i2mrk 8
% 3 S Z—U--I cos (8 - ) e €0S a6 (10.7)
v -m
. m
= -lz—lng- j cos B cos U sin(2Trk cos 8) d&
-

-iK% « cos ¥ - Jl (211 rk)

Mow, by (9. 9) and (9. 10) we have

m

2 1
th = 55 cos (6 -1V)de = > % (10, 8)

$

vv

]}
=

Therefore the coherence between v and h for system 0 in a

single -mode isotropic noise is

2
|2 | >
C = % = 2cosz\l! lJl(Zﬂrk)l
vv hh
Y
h
r v

e

Figure X-1. Geometry of System 0 X-3




Notice in (10.9) the dependence of coherence on §, the

m
horizontal seismometer orientation angle, For {§ = >, we have C = 0;

&of @EO 0NN

and for ¥ = 0, T we have the maximum cohcrence,
2 .
C = 2[J1(2ﬁrk)l (10. 10)

Let us give tie name System 1 to the special instance of

-y s

System 0 when § = 0 (Figure X-2). In Table X-1, the prediction error

1-C for System 1, where C is calculated by (10.8), is given as a function l
of 2 rk. With this two-channel system, we get a prediction error as low
as 0, 324, for 2nrk =1.8, '
C. MULTIPLE -HORIZONTAL ARRAYS
l
Since part of the vertical component of single -mode isotropic
noise can be predicted by a single spatially separated horizontal seismometer, l
one should expect that ver:r good performance might be achieved by imple-
menting multichannel prediction using a large enough number of additional i
horizontals, arranged in a suitable geometry. To ‘nvestigate this possibility,
let us consic:r the arrays shown in Figure X-2. The array parameters are: l
SYSTEM 1. hi:r, =7, p, = ¥ =0 (12 11) l
SYSTEM 2. h :r_=r, p_= 1y = L”%m,mn,z ’
SYSTEM 3. h_:r_=r, p_= ¢m=-‘£‘—;lm, m=1,2,3 '
SYSTEM 4, hm: rm=r, pm=tm=mn, m=1,2 ]
SYSTEM 5. h_:r =r1,p =y = ‘-’-‘3"- m=1,2,3,4
SYSTEM 5. hm: r =T pm = wm = -”g—n , m=1,2,3,4,5,6 ]
SYSTEM 7. hm: r ST P = ¢m= 2—r-r:;lT-,m=1,2,3 l
In all of these systems, the horizontals are place at the same
distance, r, from the vertical seismometer location, and the horizontais are l
oriented so that they point away from the vertical, i.e., ¥ = p.
1

X-4
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SYSTEM 1 SYSTEM 2

SYSTEM 3 SYSTEM 4
® — D — ® —p

SYSTEM & SYSTEM 6
<—— @ —— < O] —

/N

SYSTEM 7 \

Figure X-2.

Array Geometries




|
i
Table X-1
!
PREDICTION ERROR FOR SYSTEM 1
I
Dimensionless Wavenun.ber, Prediction Error
21r-k (1-C) l
(radians)

0 1.0 l
0.2 0.980 l
0.4 0.923
0.6 0.836 l
0.8 0.728
1.0 0.613 l
1.2 0.503
1.4 0.413 l
1.6 0. 350
1.8 0. 324 l
2.0 0. 335
2.2 0. 382 l
2.4 0. 459
2.6 0.557 l
2.8 0. 664
3.0 0.779 ]
3.2 0.863
3.4 0.936 ]
3.6 0.982 |
3.8 1.000 ]
4,0 0.991

]

| —— ‘
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The decision to restrict our attention to such outward-

pointing arrays is motivated by the following fact: let us be given a set of

points Pl’ P'Z, . - e, PM in the X-Y plane. Then among all arrays

Vv, hl’ h?, ey hM such that the vertical v is located atO and the

horizontais h_ are locatedatP_, m =1, 2, . . ., M, with h _ having
m m m

arbitrary orientation angle lbm, the array which gives the best multi-
channel prediction performance in sing¢le-mode isotropic noise is the
outward-pointing array, that is, the array for which ‘llm = pm for all m.
This follows from the fact that maximum coherence between separated
vertical and horizontal in single-mode isotropic noise cccurs when the

horizontal is outward-pointing (Formula 10.9).

Having restricted ourselves to outward-pointing arrays,
we further restrict this preliminary investigation to arrays in which
all of the horizontals are a* equal distance from the vertical because, for
an array of outward-pointing horizontals hm at equal distance from the
vertical v, the theoretical optimum prediction filters Gm to predict
v from the hm's in isotropic noise are Quite easy to compute. Ir fact,
for each of the Systems 1, 2, 4, 5, 6, and 7 it is okvious that all of the
prediction filters are equal, bYecause of symmetry both in the ncise field and
in the array geometries. Hence, it is necessary to design but one prediction
filter for each of these arrays, and in each case apply this filter to the
summed outputs of all the horizontals. Therefore, the minimal prediction

error for these systems is simply

Prediction error = l-Cvs (10.12)

where s = summed output of horizontals, and Cvs = coherence between v and s.




One can obtain expressions for Cvs in terms of BRessel l ll
functions for each of the systems 1-7, In the case of system 3, l-CVS
may not be the minimal prediction error, since it is possible that the I ]
optimum prediction filters for ho, hl’ hZ are not identical.

In the case of radially-oriented horizontal -component l ]
instruments on a circle of radius r in isotropic noise (with total power &), ]
the expressions (9.8) and (9. 10) may be simplified, as follows: l

In (9. 8) let l ]

m ;
u=2nkr l ]
P(8) = ¢ /2m l ]

Thus the crosspcwer between two horizontals is

¢ (" 2 2 2 2 }
— i - sin” a . (10.13)
an o In {cos a . sin ¢ - sin L ¢ I !

. 1 a
cos(2u sin mncosq:) dé l ]

$ {cos(Zamn) JO(Zu sin amn) + J’Z(Zu sin amn)}/z

where 2 Q = p_ =-p 18 the angular separation between instruments m
mn n m
and n.
The crosspower between the central vertical and a
horizontal is given by substituting in (9. 10):
= 8 - 1 = 0 -
¢ L P

u = 21 kr,




B

| giving ‘
Ll
. _ -iK$ j . \
J va = > ) cos ¢ sin(u cosé) d¢ (10. 14)
=-iK$§ . Jl(u)
The autopower for a horizontal is ¢ = §/2. This

mayv be verified by setting amn = 0 in (10, 13)., The autopower for the

vertical is vi = IKIZ $ as given by (10.8).

The coherence between the output of the vertical and the

summed outputs of the horizontals is

st | st
Cvs = T T (10, 15)
vV sS
where
M
qsvs:z: 8 (10. 16)
mel
= -iMK § J’l(u)
and
M M
= 10.1
0 n0.17
m=1l n=1
M
=9 a ) inQ
21 et {cos (2 mn' TO(Zu sin mn)

+ JZ(Zu sin amn)}/z

for an array containing M horizontals.

. .
L]




Thus, ) 2 (10. 18)
2M IJ’l(u)I

M M
E E {cos (Zamn) Jo(Zu sin amn) + JZ(Zu sin amn)}
n=

m=1i 1

C =
Vs

. 1
Denoting the coherence for system 1 by Cvs’ -he coherence for system

2
2by C , etc., we have: I
vs

c! = [Jl(u)lz /(%) (10.19)

C‘Z,S = IJ (u)l / 1 + J' \/—u)}
c3 9[J1(u)l /{% + 1) () % 7, <\/3Tu) + 23,00 + 3 3u)}

@]
"

4 4'IJ1(u)’Z/ {1 - T, (2w + JZ(Zu)}
c’ = 16iJ1(u)]2/{2 +47, (Jz'u) + 27, (2u) - 27 (Zu)}

c® - 36IJ1(u)IZ/{3+ 3300w+ 63, () - 37 (V3u)

+eT, (‘/3’1,) + 37, (2u) - 37, (zu)}
C:s = 9[J1(u)|2/{% + 3JZ(\/3—u) - % Ty (\/Z-i_u)}

The prediction errors (1 -Cvs) for the seven systems are
illustra‘zd in Figures X-3 through X-9 by the curves labeled "P.E."
In addition to the prediction error, there are certain functions which
determine the usefulness of each array. It is not sufficient that the
prediction error be low, if the power response st is also low, since
the optimum prediction filter response is inversely proportional to éss
and it is desirable to avoid undue amplification of uncorrelated noise

appearing on the horizonal outputs.
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A measure of the arnplification of Rayleigh noise relative to
uncorrelated noise is shown by the curves marked '""R'" in Figures X-3
through X-9. The function plotted is the ratic of Rayleigh nnise power in
2
g horizontal >utputs (% i i
the average of the M horizontal sutputs ( ss/M ) to the Rayleigh noise
power in the output of a single horizontal ($/2). The corresponding ratio

for uncorrelated noise is 1/M.

D. LOVE-WAVE RESPONSES

Another important consideration is the response of the
system to Love waves, Since the vertical instrument is insensitive to
Love waves, any Love energy which appears in the average of the hori-
zontals will lead to erroneous prediction of noise on the vertical, Itis
therefore desirable that the system be as inseasitive as possible to
Love waves, In Figures X-3 through X-9, the curves labeled ""L"
show the ratio of Love noise power in the average ot the M horizontal
outputs ( ASS/MZ) to the Love noise power in the output of a single

horizontal,

The Love-wave responses are computed as follows: For our
purposes, we may consider a Love-wave to be identical to a Ravleigh wave
except that the motion is perpendicular to (instead of inline with) the direction
of propagation and there is no vertical component of motion. Assume a

uniform power distribution A/2T., Since there is no vertical component,

Avim & Ayy T B

Since the horizontal motion is now transverse, the factors
cos(f - Wm) and cos (6 - ‘bn) in equation (9. 8) must be replaced by
sin (6 - Wm) and sin (0 - Wn). By means of the same substitutions as

were used to obtain Equation (10, 13), we derive the analogous expression
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The power spectrum for the sum of M horizontals is

AsszA {cos (Zamn) JO (2u sin amn) - JZ(Zu sin amn)} / 2

Rayleigh-wave response functions @ss/é for the 7 systems
are given by the denominators in Equations (10, 19)., Corresponding Love-
wave response functions ASS/A may be obtained by changing the signs

of all terms in the corresponding Rayleigh functions which contain

Bessel functions of order 2.
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SECTION XI
CONCLUSIONS

Theoretical results obtained in this study indicate that arrays
of horizontal-component seismometers should prove to be useful tools for
the removal of trapped-mode noise from the outputs of vertical-component
instruments. A necessary condition is that the horizontals must be spatially
separated from the vertical. In the case of a single-noise mode, arrays
such as those studied in Section X should perform bhest when the array
diam r is approximately one-half wavelength. Signal enhancement
systeias employing only vertical instruments require, in general, array
diameters of at least one wavelength, Thus, multicomponent arrays should

offer meaningful advantages in terms of land and telemetry requirements.,

It is unlikely that difficulties presented by system noise,
uncorrelated seismic noise and Love waves should be any more serious
than they are in the case of vertical-component arrays. The effect of
additional noise modes on multicomponent array performance has not been
studied yet, However, it is reasonable to assume that a multiplicity of
modes may be dealt with by the application of multichannel filter techniques
to the outputs of rings of horizontals. It has been shown that an array
consisting of a number of rings of verticals can be useful in the presence
of a similar number of noise modes, and there is no known reason for
assuming that this usefulness might be a property peculiar to vertical-

component arrays,
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The results derived theoretically for multicomponent
seismomter arrays are quite conducive to optimism, Referring to
Figures X-7 and X -8, it can be seen that, il the array dimensions are
suitable (r/2~0.25), the theoretical prediction errcr is less than 0. 01,
the Love wave response function is less than 0, 0! and the Rayleigh wave
response function is approximately 0.7. Thus, it is theoretically possible
to predict (and hence remove) more than 99 percent of the Rayleigh noise
on the vertical component in the frequency range in which the wavelength
is appropriate. The low value of the Love wave response function implies
that very little extraneous noise power should be introduced into the
system output as a result of Love waves appea>ing in the outputs of the
horizontal instruments. The high value of the Rayleigh wave response
function implies that the filter responses need not be unduly large and
that uncorrelated noise from the horizontals will not be amplified to a
serious degree. The finding that all three response functions take on
desirable values in the same range of wavelength is both unexpected

and fortuitous,

From the results of the theoretical investigations reported
in this report, it is concluded that multicomponent seismometer arrays
offer a great deal of promise for signal enhancement anplications. It
is recommended that experime~’-! investigations of such systems be

undertaken as soon as possible.
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